Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.495
Filtrar
1.
Int J Biol Sci ; 20(7): 2686-2697, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725852

RESUMO

Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer. Breast cancer stem cells (BCSCs) are believed to play a crucial role in the carcinogenesis, therapy resistance, and metastasis of TNBC. It is well known that inflammation promotes stemness. Several studies have identified breast cancer-associated gene 2 (BCA2) as a potential risk factor for breast cancer incidence and prognosis. However, whether and how BCA2 promotes BCSCs has not been elucidated. Here, we demonstrated that BCA2 specifically promotes lipopolysaccharide (LPS)-induced BCSCs through LPS induced SOX9 expression. BCA2 enhances the interaction between myeloid differentiation primary response protein 88 (MyD88) and Toll-like receptor 4 (TLR4) and inhibits the interaction of MyD88 with deubiquitinase OTUD4 in the LPS-mediated NF-κB signaling pathway. And SOX9, an NF-κB target gene, mediates BCA2's pro-stemness function in TNBC. Our findings provide new insights into the molecular mechanisms by which BCA2 promotes breast cancer and potential therapeutic targets for the treatment of breast cancer.


Assuntos
Lipopolissacarídeos , Células-Tronco Neoplásicas , Fatores de Transcrição SOX9 , Humanos , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOX9/genética , Feminino , Lipopolissacarídeos/farmacologia , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/genética , NF-kappa B/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Regulação para Cima , Transdução de Sinais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Regulação Neoplásica da Expressão Gênica
2.
PLoS One ; 19(5): e0301080, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38728328

RESUMO

Entheses are classified into three types: fibrocartilaginous, fibrous, and periosteal insertions. However, the mechanism behind the development of fibrous entheses and periosteal insertions remains unclear. Since both entheses are part of the temporomandibular joint (TMJ), this study analyzes the TMJ entheses. Here, we show that SOX9 expression is negatively regulated during TMJ enthesis development, unlike fibrocartilage entheses which are modularly formed by SCX and SOX9 positive progenitors. The TMJ entheses was adjacent to the intramembranous bone rather than cartilage. SOX9 expression was diminished during TMJ enthesis development. To clarify the functional role of Sox9 in the development of TMJ entheses, we examined these structures in TMJ using Wnt1Cre;Sox9flox/+ reporter mice. Wnt1Cre;Sox9flox/+ mice showed enthesial deformation at the TMJ. Next, we also observed a diminished SOX9 expression area at the enthesis in contact with the clavicle's membranous bone portion, similar to the TMJ entheses. Together, these findings reveal that the timing of SOX9 expression varies with the ossification development mode.


Assuntos
Osteogênese , Fatores de Transcrição SOX9 , Articulação Temporomandibular , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOX9/genética , Animais , Camundongos , Articulação Temporomandibular/metabolismo , Articulação Temporomandibular/crescimento & desenvolvimento , Osteogênese/genética , Regulação para Baixo , Fibrocartilagem/metabolismo , Camundongos Transgênicos
3.
Commun Biol ; 7(1): 545, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714724

RESUMO

CircRNAs are covalently closed, single-stranded RNA that form continuous loops and play a crucial role in the initiation and progression of tumors. Cancer stem cells (CSCs) are indispensable for cancer development; however, the regulation of cancer stem cell-like properties in gastric cancer (GC) and its specific mechanism remain poorly understood. We elucidate the specific role of Circ-0075305 in GC stem cell properties. Circ-0075305 associated with chemotherapy resistance was identified by sequencing GC cells. Subsequent confirmation in both GC tissues and cell lines revealed that patients with high expression of Circ-0075305 had significantly better overall survival (OS) rates than those with low expression, particularly when treated with postoperative adjuvant chemotherapy for GC. In vitro and in vivo experiments confirmed that overexpression of Circ-0075305 can effectively reduce stem cell-like properties and enhance the sensitivity of GC cells to Oxaliplatin compared with the control group. Circ-0075305 promotes RPRD1A expression by acting as a sponge for corresponding miRNAs. The addition of LF3 (a ß-catenin/TCF4 interaction antagonist) confirmed that RPRD1A inhibited the formation of the TCF4-ß-catenin transcription complex through competitive to ß-catenin and suppressed the transcriptional activity of stem cell markers such as SOX9 via the Wnt/ß-catenin signaling pathway. This leads to the downregulation of stem cell-like property-related markers in GC. This study revealed the underlying mechanisms that regulate Circ-0075305 in GCSCs and suggests that its role in reducing ß-catenin signaling may serve as a potential therapeutic candidate.


Assuntos
Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Células-Tronco Neoplásicas , RNA Circular , Fatores de Transcrição SOX9 , Neoplasias Gástricas , Fator de Transcrição 4 , beta Catenina , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Humanos , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOX9/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , beta Catenina/metabolismo , beta Catenina/genética , RNA Circular/genética , RNA Circular/metabolismo , Fator de Transcrição 4/genética , Fator de Transcrição 4/metabolismo , Animais , Camundongos , Linhagem Celular Tumoral , Camundongos Nus , Masculino , Feminino , Resistencia a Medicamentos Antineoplásicos/genética , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade
4.
BMC Genomics ; 25(1): 464, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741085

RESUMO

Gonad development includes sex determination and divergent maturation of the testes and ovaries. Recent advances in measuring gene expression in single cells are providing new insights into this complex process. However, the underlying epigenetic regulatory mechanisms remain unclear. Here, we profiled chromatin accessibility in mouse gonadal cells of both sexes from embryonic day 11.5 to 14.5 using single-cell assay for transposase accessible chromatin by sequencing (scATAC-seq). Our results showed that individual cell types can be inferred by the chromatin landscape, and that cells can be temporally ordered along developmental trajectories. Integrative analysis of transcriptomic and chromatin-accessibility maps identified multiple putative regulatory elements proximal to key gonadal genes Nr5a1, Sox9 and Wt1. We also uncover cell type-specific regulatory factors underlying cell type specification. Overall, our results provide a better understanding of the epigenetic landscape associated with the progressive restriction of cell fates in the gonad.


Assuntos
Linhagem da Célula , Cromatina , Gônadas , Fatores de Transcrição SOX9 , Análise de Célula Única , Animais , Cromatina/metabolismo , Cromatina/genética , Camundongos , Linhagem da Célula/genética , Feminino , Masculino , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Gônadas/metabolismo , Gônadas/citologia , Gônadas/embriologia , Fator Esteroidogênico 1/genética , Fator Esteroidogênico 1/metabolismo , Proteínas WT1/genética , Proteínas WT1/metabolismo , Testículo/metabolismo , Testículo/citologia , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Ovário/metabolismo , Ovário/citologia
5.
Signal Transduct Target Ther ; 9(1): 96, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38653754

RESUMO

The translocation of YAP from the cytoplasm to the nucleus is critical for its activation and plays a key role in tumor progression. However, the precise molecular mechanisms governing the nuclear import of YAP are not fully understood. In this study, we have uncovered a crucial role of SOX9 in the activation of YAP. SOX9 promotes the nuclear translocation of YAP by direct interaction. Importantly, we have identified that the binding between Asp-125 of SOX9 and Arg-124 of YAP is essential for SOX9-YAP interaction and subsequent nuclear entry of YAP. Additionally, we have discovered a novel asymmetrical dimethylation of YAP at Arg-124 (YAP-R124me2a) catalyzed by PRMT1. YAP-R124me2a enhances the interaction between YAP and SOX9 and is associated with poor prognosis in multiple cancers. Furthermore, we disrupted the interaction between SOX9 and YAP using a competitive peptide, S-A1, which mimics an α-helix of SOX9 containing Asp-125. S-A1 significantly inhibits YAP nuclear translocation and effectively suppresses tumor growth. This study provides the first evidence of SOX9 as a pivotal regulator driving YAP nuclear translocation and presents a potential therapeutic strategy for YAP-driven human cancers by targeting SOX9-YAP interaction.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Núcleo Celular , Fatores de Transcrição SOX9 , Fatores de Transcrição , Proteínas de Sinalização YAP , Humanos , Proteínas de Sinalização YAP/genética , Proteínas de Sinalização YAP/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/genética , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Transporte Ativo do Núcleo Celular/genética , Camundongos , Linhagem Celular Tumoral , Animais , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
6.
Arch Dermatol Res ; 316(5): 134, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662224

RESUMO

Exploration of gene expression variations is a potential source to unravel biological pathways involved in pathological changes in body and understand the mechanism underneath. Vitiligo patients were explored for gene expression changes transcriptionally at perilesional site in comparison to normal site of same patients for melanogenesis pathway (TYR, DCT & TYRP1) cell adhesion (MMPs & TIMP1), cell survival (BCL2 & BAX1) as well as proliferation, migration & development (SOX9, SOX10 & MITF) regulatory system, using skin biopsy samples. Results were also compared with changes in gene expression for melanocytes under stress after hydrogen peroxide treatment in-vitro. Gene amplification was carried out via real time PCR. We found increased expression of proliferation, migration & development regulatory genes as well as melanogenesis pathway genes at perilesional site of patients. In-vitro study also supports induced MITF expression and disturbed melanogenesis in melanocytes under stress. Expression level ratio of cell survival regulatory genes' (BCL2/BAX1) as well as cell adhesion regulatory genes (MMPs/TIMP1) was observed upregulated at patient's perilesional site however downregulated in hydrogen peroxide treated melanocytes in-vitro. Observed upregulated gene expression at perilesional site of patients may be via positive feedback loop in response to stress to increase cell tolerance power to survive against adverse conditions. Gene expression analysis suggests better cell survival and proliferation potential at perilesional site in vitiligo patients. It seems in-vivo conditions/growth factors supports cells to fight for survival to accommodate stressed conditions.


Assuntos
Sobrevivência Celular , Peróxido de Hidrogênio , Melanócitos , Vitiligo , Humanos , Vitiligo/genética , Vitiligo/patologia , Melanócitos/metabolismo , Melanócitos/patologia , Sobrevivência Celular/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Masculino , Adulto , Feminino , Proliferação de Células/genética , Pele/patologia , Pele/metabolismo , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Pessoa de Meia-Idade , Adulto Jovem , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Biópsia , Adolescente , Adesão Celular/genética
7.
Mol Biol Rep ; 51(1): 523, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630183

RESUMO

BACKGROUND: In recent decades, phytotherapy has remained as a key therapeutic option for the treatment of various cancers. Evodiamine, an excellent phytocompound from Evodia fructus, exerts anticancer activity in several cancers by modulating drug resistance. However, the role of evodiamine in cisplatin-resistant NSCLC cells is not clear till now. Therefore, we have used evodiamine as a chemosensitizer to overcome cisplatin resistance in NSCLC. METHODS: Here, we looked into SOX9 expression and how it affects the cisplatin sensitivity of cisplatin-resistant NSCLC cells. MTT and clonogenic assays were performed to check the cell proliferation. AO/EtBr and DAPI staining, ROS measurement assay, transfection, Western blot analysis, RT-PCR, Scratch & invasion, and comet assay were done to check the role of evodiamine in cisplatin-resistant NSCLC cells. RESULTS: SOX9 levels were observed to be higher in cisplatin-resistant A549 (A549CR) and NCI-H522 (NCI-H522CR) compared to parental A549 and NCI-H522. It was found that SOX9 promotes cisplatin resistance by regulating ß-catenin. Depletion of SOX9 restores cisplatin sensitivity by decreasing cell proliferation and cell migration and inducing apoptosis in A549CR and NCI-H522CR. After evodiamine treatment, it was revealed that evodiamine increases cisplatin-induced cytotoxicity in A549CR and NCI-H522CR cells through increasing intracellular ROS generation. The combination of both drugs also significantly inhibited cell migration by inhibiting epithelial to mesenchymal transition (EMT). Mechanistic investigation revealed that evodiamine resensitizes cisplatin-resistant cells toward cisplatin by decreasing the expression of SOX9 and ß-catenin. CONCLUSION: The combination of evodiamine and cisplatin may be a novel strategy for combating cisplatin resistance in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Quinazolinas , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Cisplatino/farmacologia , beta Catenina , Transição Epitelial-Mesenquimal , Espécies Reativas de Oxigênio , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Morte Celular , Fatores de Transcrição SOX9/genética
8.
Cell Biochem Funct ; 42(3): e4000, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38566395

RESUMO

Tongue squamous cell carcinoma (TSCC) is a prevalent form of oral malignancy, with increasing incidence. Unfortunately, the 5-year survival rate for patients has not exceeded 50%. Studies have shown that sex-determining region Y box 9 (SOX9) correlates with malignancy and tumor stemness in a variety of tumors. To investigate the role of SOX9 in TSCC stemness, we analyzed its influence on various aspects of tumor biology, including cell proliferation, migration, invasion, sphere and clone formation, and drug resistance in TSCC. Our data suggest a close association between SOX9 expression and both the stemness phenotype and drug resistance in TSCC. Immunohistochemical experiments revealed a progressive increase of SOX9 expression in normal oral mucosa, paracancerous tissues, and tongue squamous carcinoma tissues. Furthermore, the expression of SOX9 was closely linked to the TNM stage, but not to lymph node metastasis or tumor diameter. SOX9 is a crucial gene in TSCC responsible for promoting the stemness function of cancer stem cells. Developing drugs that target SOX9 is extremely important in clinical settings.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Neoplasias da Língua , Humanos , Carcinoma de Células Escamosas/patologia , Neoplasias da Língua/metabolismo , Linhagem Celular Tumoral , Neoplasias Bucais/genética , Língua/metabolismo , Língua/patologia , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo
9.
Tissue Cell ; 87: 102315, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38335885

RESUMO

BACKGROUND: Retinal ischemia-refusion (I/R) is a leading cause of irreversible blindness worldwide. This study aims to explore the regulatory role of SOX9 in retinal I/R injury, and attempts to elucidate its potential regulatory mechanism. METHODS: Retinal I/R injury model was established in vivo, and the histological changes was examined by hematoxylin and eosin (H&E) staining and immunofluorescent assay was performed to examine SOX9 expression. Oxygenation-glucose deprivation/reoxygenation (OGD/R)-induced retinal ischemia/reperfusion (I/R) injury in 661 W cells was constructed as an in vitro cellular model of glaucoma. The production of cytokines, lactate dehydrogenase (LDH) and the antioxidant enzymes were assessed by their commercial kits. Cellular reactive oxygen species (ROS) and lipid ROS was detected using DCFH-DA and C11-BODIPY 581/591 staining, respectively. Lipid peroxidation and Fe2+ level were detected to assess the ferroptosis level. Protein expression was examined by western blot. LM22B-10, the agonist of ERK signaling, was used to pretreat 661 W cells for mechanism investigation. RESULTS: SOX9 was aberrantly upregulated following retinal I/R injury both in vivo and in vitro. SOX9 knockdown exerted a protective role against OGD/R-triggered oxidative stress, inflammatory response and ferroptosis in 661 W cells. Further, ERK/p38 signaling was activated in 661 W cells following OGD/R induction, which was repressed by SOX9 knockdown, and the ERK signaling agonist partially counteracted the protective role of SOX9 knockdown against oxidative stress, inflammatory response and ferroptosis in OGD/R-induced 661 W cells. CONCLUSION: Collectively, inhibiting SOX9 to block oxidative stress, inflammation and ferroptosis by inactivating ERK/p38 signaling might be effective to prevent retinal I/R injury, thereby alleviating glaucoma.


Assuntos
Ferroptose , Glaucoma , Traumatismo por Reperfusão , Humanos , Espécies Reativas de Oxigênio/metabolismo , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Apoptose , Traumatismo por Reperfusão/metabolismo , Estresse Oxidativo , Glaucoma/metabolismo , Isquemia , Glucose/metabolismo , Oxigênio/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo
10.
Sci Transl Med ; 16(736): eabq4581, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38416842

RESUMO

Fibrosis is a hallmark of chronic disease. Although fibroblasts are involved, it is unclear to what extent endothelial cells also might contribute. We detected increased expression of the transcription factor Sox9 in endothelial cells in several different mouse fibrosis models. These models included systolic heart failure induced by pressure overload, diastolic heart failure induced by high-fat diet and nitric oxide synthase inhibition, pulmonary fibrosis induced by bleomycin treatment, and liver fibrosis due to a choline-deficient diet. We also observed up-regulation of endothelial SOX9 in cardiac tissue from patients with heart failure. To test whether SOX9 induction was sufficient to cause disease, we generated mice with endothelial cell-specific overexpression of Sox9, which promoted fibrosis in multiple organs and resulted in signs of heart failure. Endothelial Sox9 deletion prevented fibrosis and organ dysfunction in the two mouse models of heart failure as well as in the lung and liver fibrosis mouse models. Bulk and single-cell RNA sequencing of mouse endothelial cells across multiple vascular beds revealed that SOX9 induced extracellular matrix, growth factor, and inflammatory gene expression, leading to matrix deposition by endothelial cells. Moreover, mouse endothelial cells activated neighboring fibroblasts that then migrated and deposited matrix in response to SOX9, a process partly mediated by the secreted growth factor CCN2, a direct SOX9 target; endothelial cell-specific Sox9 deletion reversed these changes. These findings suggest a role for endothelial SOX9 as a fibrosis-promoting factor in different mouse organs during disease and imply that endothelial cells are an important regulator of fibrosis.


Assuntos
Insuficiência Cardíaca , Fatores de Transcrição , Animais , Humanos , Camundongos , Modelos Animais de Doenças , Células Endoteliais , Fibrose , Peptídeos e Proteínas de Sinalização Intercelular , Cirrose Hepática/complicações , Fatores de Transcrição SOX9/genética
11.
Proc Natl Acad Sci U S A ; 121(8): e2316969121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38346197

RESUMO

SOX8 was linked in a genome-wide association study to human height heritability, but roles in chondrocytes for this close relative of the master chondrogenic transcription factor SOX9 remain unknown. We undertook here to fill this knowledge gap. High-throughput assays demonstrate expression of human SOX8 and mouse Sox8 in growth plate cartilage. In situ assays show that Sox8 is expressed at a similar level as Sox9 in reserve and early columnar chondrocytes and turned off when Sox9 expression peaks in late columnar and prehypertrophic chondrocytes. Sox8-/- mice and Sox8fl/flPrx1Cre and Sox9fl/+Prx1Cre mice (inactivation in limb skeletal cells) have a normal or near normal skeletal size. In contrast, juvenile and adult Sox8fl/flSox9fl/+Prx1Cre compound mutants exhibit a 15 to 20% shortening of long bones. Their growth plate reserve chondrocytes progress slowly toward the columnar stage, as witnessed by a delay in down-regulating Pthlh expression, in packing in columns and in elevating their proliferation rate. SOX8 or SOX9 overexpression in chondrocytes reveals not only that SOX8 can promote growth plate cell proliferation and differentiation, even upon inactivation of endogenous Sox9, but also that it is more efficient than SOX9, possibly due to greater protein stability. Altogether, these findings uncover a major role for SOX8 and SOX9 in promoting skeletal growth by stimulating commitment of growth plate reserve chondrocytes to actively proliferating columnar cells. Further, by showing that SOX8 is more chondrogenic than SOX9, they suggest that SOX8 could be preferred over SOX9 in therapies to promote cartilage formation or regeneration in developmental and degenerative cartilage diseases.


Assuntos
Condrócitos , Estudo de Associação Genômica Ampla , Camundongos , Humanos , Animais , Condrócitos/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Regulação da Expressão Gênica , Diferenciação Celular , Proliferação de Células , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo
12.
Science ; 383(6685): eadd6371, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38386758

RESUMO

The steps governing healing with or without fibrosis within the same microenvironment are unclear. After acute kidney injury (AKI), injured proximal tubular epithelial cells activate SOX9 for self-restoration. Using a multimodal approach for a head-to-head comparison of injury-induced SOX9 lineages, we identified a dynamic SOX9 switch in repairing epithelia. Lineages that regenerated epithelia silenced SOX9 and healed without fibrosis (SOX9on-off). By contrast, lineages with unrestored apicobasal polarity maintained SOX9 activity in sustained efforts to regenerate, which were identified as a SOX9on-on Cadherin6pos cell state. These reprogrammed cells generated substantial single-cell WNT activity to provoke a fibroproliferative response in adjacent fibroblasts, driving AKI to chronic kidney disease. Transplanted human kidneys displayed similar SOX9/CDH6/WNT2B responses. Thus, we have uncovered a sensor of epithelial repair status, the activity of which determines regeneration with or without fibrosis.


Assuntos
Injúria Renal Aguda , Rim , Insuficiência Renal Crônica , Fatores de Transcrição SOX9 , Animais , Humanos , Injúria Renal Aguda/genética , Injúria Renal Aguda/patologia , Células Epiteliais , Fibrose , Rim/patologia , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/patologia , Fatores de Transcrição SOX9/genética , Regeneração , Camundongos
13.
J Cell Physiol ; 239(5): e31211, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38304971

RESUMO

Cataract, a leading cause of blindness, is characterised by lens opacification. Type 2 diabetes is associated with a two- to fivefold higher prevalence of cataracts. The risk of cataract formation increases with the duration of diabetes and the severity of hyperglycaemia. Hydroxyapatite deposition is present in cataractous lenses that could be the consequence of osteogenic differentiation and calcification of lens epithelial cells (LECs). We hypothesised that hyperglycaemia might promote the osteogenic differentiation of human LECs (HuLECs). Osteogenic medium (OM) containing excess phosphate and calcium with normal (1 g/L) or high (4.5 g/L) glucose was used to induce HuLEC calcification. High glucose accelerated and intensified OM-induced calcification of HuLECs, which was accompanied by hyperglycaemia-induced upregulation of the osteogenic markers Runx2, Sox9, alkaline phosphatase and osteocalcin, as well as nuclear translocation of Runx2. High glucose-induced calcification was abolished in Runx2-deficient HuLECs. Additionally, high glucose stabilised the regulatory alpha subunits of hypoxia-inducible factor 1 (HIF-1), triggered nuclear translocation of HIF-1α and increased the expression of HIF-1 target genes. Gene silencing of HIF-1α or HIF-2α attenuated hyperglycaemia-induced calcification of HuLECs, while hypoxia mimetics (desferrioxamine, CoCl2) enhanced calcification of HuLECs under normal glucose conditions. Overall, this study suggests that high glucose promotes HuLEC calcification via Runx2 and the activation of the HIF-1 signalling pathway. These findings may provide new insights into the pathogenesis of diabetic cataracts, shedding light on potential factors for intervention to treat this sight-threatening condition.


Assuntos
Diferenciação Celular , Subunidade alfa 1 de Fator de Ligação ao Core , Células Epiteliais , Glucose , Subunidade alfa do Fator 1 Induzível por Hipóxia , Cristalino , Osteogênese , Humanos , Cristalino/metabolismo , Cristalino/patologia , Diferenciação Celular/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Glucose/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Osteocalcina/metabolismo , Osteocalcina/genética , Catarata/patologia , Catarata/metabolismo , Catarata/genética , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOX9/genética , Calcinose/metabolismo , Calcinose/patologia , Calcinose/genética , Hiperglicemia/metabolismo , Hiperglicemia/genética , Hiperglicemia/patologia , Transdução de Sinais , Fosfatase Alcalina/metabolismo , Fosfatase Alcalina/genética , Células Cultivadas
14.
Biol Reprod ; 110(5): 985-999, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38376238

RESUMO

Sry on the Y-chromosome upregulates Sox9, which in turn upregulates a set of genes such as Fgf9 to initiate testicular differentiation in the XY gonad. In the absence of Sry expression, genes such as Rspo1, Foxl2, and Runx1 support ovarian differentiation in the XX gonad. These two pathways antagonize each other to ensure the development of only one gonadal sex in normal development. In the B6.YTIR mouse, carrying the YTIR-chromosome on the B6 genetic background, Sry is expressed in a comparable manner with that in the B6.XY mouse, yet, only ovaries or ovotestes develop. We asked how testicular and ovarian differentiation pathways interact to determine the gonadal sex in the B6.YTIR mouse. Our results showed that (1) transcript levels of Sox9 were much lower than in B6.XY gonads while those of Rspo1 and Runx1 were as high as B6.XX gonads at 11.5 and 12.5 days postcoitum. (2) FOXL2-positive cells appeared in mosaic with SOX9-positive cells at 12.5 days postcoitum. (3) SOX9-positive cells formed testis cords in the central area while those disappeared to leave only FOXL2-positive cells in the poles or the entire area at 13.5 days postcoitum. (4) No difference was found at transcript levels of all genes between the left and right gonads up to 12.5 days postcoitum, although ovotestes developed much more frequently on the left than the right at 13.5 days postcoitum. These results suggest that inefficient Sox9 upregulation and the absence of Rspo1 repression prevent testicular differentiation in the B6.YTIR gonad.


Assuntos
Fatores de Transcrição SOX9 , Processos de Determinação Sexual , Testículo , Trombospondinas , Regulação para Cima , Animais , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Masculino , Feminino , Camundongos , Trombospondinas/genética , Trombospondinas/metabolismo , Processos de Determinação Sexual/genética , Processos de Determinação Sexual/fisiologia , Testículo/metabolismo , Gônadas/metabolismo , Ovário/metabolismo , Proteína Forkhead Box L2/genética , Proteína Forkhead Box L2/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Diferenciação Sexual/genética , Camundongos Endogâmicos C57BL
15.
Invest Ophthalmol Vis Sci ; 65(2): 25, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38345552

RESUMO

Purpose: To evaluate the expression of sry-box transcription factor 9 (SOX9) in orbital fibroblasts (OFs) of thyroid eye disease (TED) and to find its potential role and underlying mechanism in orbital fibrosis. Methods: OFs were cultured from orbital connective tissues obtained from patients with TED (n = 10) and healthy controls (n = 6). SOX9 was depleted by small interfering RNA or overexpressed through lentivirus transduction in OFs. Fibroblast contractile activity was measured by collagen gel contraction assay and proliferation was examined by EdU assay. Transcriptomic changes were assessed by RNA sequencing. Results: The mRNA and protein levels of SOX9 were significantly higher in OFs cultured from patients with TED than those from healthy controls. Extracellular matrix-related genes were down-regulated by SOX9 knockdown and up-regulated by SOX9 overexpression in TED-OFs. SOX9 knockdown significantly decrease the contraction and the antiapoptotic ability of OFs, whereas the overexpression of SOX9 increased the ability of transformation, migration, and proliferation of OFs. SOX9 knockdown suppressed the expression of phosphorylated ERK1/2, whereas its overexpression showed the opposite effect. Epidermal growth factor receptor (EGFR) is one of the notably down-regulated genes screened out by RNA sequencing. Chromatin immunoprecipitation-qPCR demonstrated SOX9 binding to the EGFR promoter. Conclusions: A high expression of SOX9 was found in TED-OFs. SOX9 can activate OFs via MAPK/ERK1/2 signaling pathway, which in turn promotes proliferation and differentiation of OFs. EGFR was a downstream target gene of SOX9. SOX9/EGFR can be considered as therapeutic targets for the treatment of orbital fibrosis in TED.


Assuntos
Oftalmopatia de Graves , Humanos , Oftalmopatia de Graves/genética , Oftalmopatia de Graves/metabolismo , Órbita/metabolismo , Sistema de Sinalização das MAP Quinases , Receptores ErbB/metabolismo , Fibroblastos/metabolismo , Fibrose , Células Cultivadas , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo
16.
Arthritis Res Ther ; 26(1): 56, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388473

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is a chronic inflammatory disease that causes disability worldwide. Exosomes released by fibroblast-like synoviocytes in RA (RA-FLSs-Exos) play a role in the development of RA, and circular RNAs (circRNAs) are important for RA progression. This study aimed to investigate the molecular mechanisms underlying the effects of RA-FLSs-Exos in RA and identify the potential pathway responsible for these effects. METHODS: We initially conducted microarray analysis to identify dysregulated circRNAs in exosomes associated with RA. We then co-cultured isolated RA-FLSs-Exos with chondrocytes to examine their role in RA. In vivo experiments were performed using collagen-induced arthritis mouse models, and circFTO knockdown was achieved through intra-articular injection of AAV5 vectors. RESULTS: Our findings revealed increased expression of circFTO in both RA-FLSs-Exos and synovial tissues from patients with RA. Exosomal circFTO hindered chondrocyte proliferation, migration, and anabolism while promoting apoptosis and catabolism. Mechanistically, we discovered that circFTO facilitates the formation of methyltransferases complex to suppress SRY-related high-mobility group box 9 (SOX9) expression with assistance from YTH domain family 2 (YTHDF2) through an m6A-dependent mechanism. Furthermore, inhibition of circFTO improved symptoms of RA in vivo. CONCLUSION: Taken together, our study demonstrates that exosomal circFTO derived from FLSs contributes to the progression of RA by targeting SOX9. These findings highlight a promising target for treating RA.


Assuntos
Artrite Reumatoide , Sinoviócitos , Animais , Camundongos , Humanos , Sinoviócitos/metabolismo , Condrócitos/metabolismo , RNA Circular/genética , Proliferação de Células , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Fibroblastos/metabolismo , Células Cultivadas , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOX9/farmacologia
17.
Sci Rep ; 14(1): 1483, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233470

RESUMO

At the molecular level, triple-negative breast cancer (TNBC) is frequently categorized as PAM50 basal-like subtype, but despite the advances in molecular analyses, the clinical outcome for these subtypes is uncertain. Long non-coding RNAs (lncRNAs) are master regulators of genes involved in hallmarks of cancer, which makes them suitable biomarkers for breast cancer (BRCA) diagnosis and prognosis. Here, we evaluated the regulatory role of lncRNA SOX9-AS1 in these subtypes. Using the BRCA-TCGA cohort, we observed that SOX9-AS1 was significantly overexpressed in basal-like and TNBC in comparison with other BRCA subtypes. Survival analyzes showed that SOX9-AS1 overexpression was associated with a favorable prognosis in TNBC and basal-like patients. To study the functions of SOX9-AS1, we determined the expression levels in a panel of nine BRCA cell lines finding increased levels in MDA-MB-468 and HCC1187 TNBC. Using subcellular fractionation in these cell lines, we ascertained that SOX9-AS1 was located in the cytoplasmic compartment. In addition, we performed SOX9-AS1 gene silencing using two short-harping constructs, which were transfected in both cell models and performed a genome-wide RNA-seq analysis. Data showed that 351 lncRNAs and 740 mRNAs were differentially expressed in MDA-MB-468 while 56 lncRNAs and 100 mRNAs were modulated in HCC1187 cells (Log2FC < - 1.5 and > 1.5, p.adj value < 0.05). Pathway analysis revealed that the protein-encoding genes potentially regulate lipid metabolic reprogramming, and epithelial-mesenchymal transition (EMT). Expression of lipid metabolic-related genes LIPE, REEP6, GABRE, FBP1, SCD1, UGT2B11, APOC1 was confirmed by RT-qPCR. Functional analysis demonstrated that the knockdown of SOX9-AS1 increases the triglyceride synthesis, cell migration and invasion in both two TNBC cell lines. In conclusion, high SOX9-AS1 expression predicts an improved clinical course in patients, while the loss of SOX9-AS1 expression enhances the aggressiveness of TNBC cells.


Assuntos
MicroRNAs , RNA Longo não Codificante , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/genética , RNA Longo não Codificante/metabolismo , Reprogramação Metabólica , Movimento Celular/genética , Lipídeos , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Proliferação de Células/genética , MicroRNAs/genética , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Proteínas do Olho/metabolismo , Proteínas de Membrana/metabolismo
18.
Eur J Med Res ; 29(1): 66, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245767

RESUMO

BACKGROUND: Adolescent idiopathic scoliosis (AIS) is a common structural deformity of the spine affecting adolescent individuals globally. The disorder is polygenic and is accompanied by the association of various genetic loci. Genetic studies in Chinese and Japanese populations have shown the association of genetic variants of SOX9 with AIS curve severity. However, no genetic study evaluating the association of SRY-Box Transcription Factor 9 (SOX9) variants with AIS predisposition has been conducted in any Indian population. Thus, we aimed to investigate the association of the genetic variants of the SOX9 along with 0.88 Mb upstream region with AIS susceptibility in the population of Northwest India. METHODS: In total, 113 AIS cases and 500 non-AIS controls were recruited from the population of Northwest India in the study and screened for 155 genetic variants across the SOX9 gene and 0.88 Mb upstream region of the gene using Global Screening Array-24 v3.0 chip (Illumina). The statistical significance of the Bonferroni threshold was set at 0.000322. RESULT: The results showed the association of 11 newly identified variants; rs9302936, rs7210997, rs77736349, rs12940821, rs9302937, rs77447012, rs8071904, rs74898711, rs9900249, rs2430514, and rs1042667 with the AIS susceptibility in the studied population. Only one variant, rs2430514, was inversely associated with AIS in the population, while the ten variants were associated with the AIS risk. Moreover, 47 variants clustered in the gene desert region of the SOX9 gene were associated at a p-value ≤ 0.05. CONCLUSION: The present study is the first to demonstrate the association of SOX9 enhancer locus variants with AIS in any South Asian Indian population. The results are interesting as rs1042667, a 3' untranslated region (UTR) variant in the exon 3 and upstream variants of the SOX9 gene, were associated with AIS susceptibility in the Northwest Indian population. This provides evidence that the variants in the enhancer region of SOX9 might regulate its gene expression, thus leading to AIS pathology and might act as an important gene for AIS susceptibility.


Assuntos
Escoliose , Humanos , Adolescente , Escoliose/genética , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único/genética , Estudos de Casos e Controles , Povo Asiático/genética , Genótipo , Fatores de Transcrição SOX9/genética
19.
Nanoscale ; 16(2): 833-847, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38093712

RESUMO

Astrocytes are highly activated following brain injuries, and their activation influences neuronal survival. Additionally, SOX9 expression is known to increase in reactive astrocytes. However, the role of SOX9 in activated astrocytes following ischemic brain damage has not been clearly elucidated yet. Therefore, in the present study, we investigated the role of SOX9 in reactive astrocytes using a poly-lactic-co-glycolic acid (PLGA) nanoparticle plasmid delivery system in a photothrombotic stroke animal model. We designed PLGA nanoparticles to exclusively enhance SOX9 gene expression in glial fibrillary acidic protein (GFAP)-immunoreactive astrocytes. Our observations indicate that PLGA nanoparticles encapsulated with GFAP:SOX9:tdTOM reduce ischemia-induced neurological deficits and infarct volume through the prostaglandin D2 pathway. Thus, the astrocyte-targeting PLGA nanoparticle plasmid delivery system provides a potential opportunity for stroke treatment. Since the only effective treatment currently available is reinstating the blood supply, cell-specific gene therapy using PLGA nanoparticles will open a new therapeutic paradigm for brain injury patients in the future.


Assuntos
Lesões Encefálicas , Nanopartículas , Acidente Vascular Cerebral , Humanos , Animais , Astrócitos/metabolismo , Acidente Vascular Cerebral/terapia , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/metabolismo , Lesões Encefálicas/metabolismo , Peptídeos/farmacologia , Encéfalo/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOX9/farmacologia
20.
BMC Pulm Med ; 23(1): 421, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919693

RESUMO

OBJECTIVE: SOX9 has been shown to be related to the metastasis of various cancers. Recently, it has been reported that SOX9 plays a regulatory role in lung adenocarcinoma (LUAD) cell metastasis, but the specific mechanism remains to be explored. Therefore, the objective of this study was to observe the effect and mechanism of SOX9 on the invasion and migration of LUAD cells. METHODS: RT-qPCR was applied to observe the expression of SOX9 and RAP1 in tumor tissues and corresponding normal lung tissues collected from LUAD patients. Co-immunoprecipitation and Pearson correlation to analyze the expression correlation of SOX9 with RAP1. To observe the role of SOX9, the invasion and migration levels of LUAD A549 cells in each group were observed by Transwell invasion assay and Scratch migration assay after knocking down or overexpressing SOX9. Besides, the expression levels of RAP1 pathway-related proteins (RAP1, RAP1GAP and RasGRP33) were observed by RT-qCPR or western blot. Subsequently, RAP1 was overexpressed and SOX9 was knocked down in A549 cells, and then the cell invasion/migration level and RAP1 pathway activity were assessed. RESULTS: The expression levels of SOX9 and RAP1 in tumor tissues and A549 cells of LUAD patients were significantly increased and positively correlated. Overexpression of SOX9 or RAP1 alone in A549 cells enhanced the invasion and migration ability of cells, as well as up-regulated the expression levels of RAP1, RAP1GAP and RasGRP33. However, knocking down SOX9 decreased cell invasion and migration levels and weakened the activity of RAP1 pathway. Notably, overexpressing RAP1 while knocking down SOX9 significantly activated RAP1 pathway and promoted cell invasion and migration. CONCLUSION: Overexpression of SOX9 in LUAD can significantly activate the RAP1 signaling pathway and promote cell invasion and migration.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Linhagem Celular Tumoral , Proliferação de Células/genética , Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/patologia , Transdução de Sinais , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA